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ABSTRACT

Title of Thesis: New Results in Discrete-Time Nonlinear Filtering
Name of Candidate: Richard Bucher Sowers

Degree and Year: Master of Science, 1988

Thesis directed by: Armand Makowski, Associate Professor, Department of Flectrical

Engineering, University of Maryland at College Park

We consider a discrete-time linear system with correlated Gaussian plant and obser-
vation noises and non-Gaussian initial condition independent of the plant and observation
noises. We firstly find a solution for the filtering problem; we find a representation for
the conditional distribution of the state at time ¢ given the observations up to time ¢ — 1.
This representation is in terms of a finite collection of easily-computable statistics. With
this solution to the filtering problem, we then find representations for the MMSE and
LLSE estimates of the state given the previous observations, and the mean-square error
between the two. (Of course the MMSE estimate will in general be a nonlinear func-
tion of the observations, whereas the LLSE estimate is by definition linear and is given
by the Kalman filtering equations.) We then consider the asymptotic behavior of the
mean-square error between the MMSE and LLSE estimates as time tends to infinity. We
find conditions on the system dynamics under which the effects of the initial condition
die out; under these conditions the non-Gaussian nature of the initial condition becomes
unimportant as ¢t becomes large. The practical value of this result is clear—under these
conditions, the LLSE estimate, which is usually less costly to generate than the MMSE
estimate, is asymptotically as good as the MMSE estimate (i.e., asymptotically optimal)

in the mean-square sense.
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CHAPTER I: INTRODUCTION

I.1. Problem Statement and Outline

We consider the one-step prediction problem associated with the stochastic discrete-

time linear dynamical system

X = L X0+ Wy
XS =¢ t=0,1,... (L1)

Y: = H: XP + Vi

which is defined on some underlying probability triple (Q, F, P) carrying the IR™-valued
plant process {X7}$° and the IR*-valued observation process {Y;}$°. Throughout, we
shall make the following assumptions:

(A.1): the process {(W21,V%1)}6° is a zero-mean Gaussian White Noise (GWN) se-

quence with covariance structure {I's41}§° given by

[+] w wy
Ti41 := Cov (Wf,"'l) = (Ef,'{’ul Efﬂ'l) , t=0,1,... (1.2)
t+1 L Y

(A.2): forallt=0,1,..., the covariance matrix X}, is positive definite,
(A.3): the initial condition £ has distribution F’ with finite first and second moments g
and A (resp.) and is independent of the process {(W2,1,V3)}§° and

(A.4): the covariance matrix A is positive definite.

Note that no a priori assumptions, save those on the first two moments, is enforced

on F.

Define Z as the vector space of all bounded Borel mappings from IR™ into C, the
complex numbers. The one-step prediction problem (hereafter referred to simply as the
“prediction problem”) associated with (1.1) is defined as the problem of computing, for
each ¢ = 0,1,..., the conditional distribution of the state X7 ; given the observations
{Y,}§ or, equivalently, the evaluating, for all t = 0,1,... and all ¢ in Z, the conditional
expectation

E[¢(X7?+1)|Ys;s: 0,1,...,7]. (1'3)
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In this thesis, we shall solve the prediction problem associated with (1.1). For each
t = 0,1,..., once the conditional distribution of X2 , given {¥,}{ is available, it is
then possible to construct X;qq := E[X2,|Ys; s = 0,1,...,t]. In general, Xiy1 is a
nonlinear function of {Y,}§, in contrast to the ’Kalman’, or LLSE, estimate of X2 ; on
the basis of {Y,}§, which is by definition linear, and which we denote by XK. We shall
find representations for both {X;}$° and {XX}{° and then form the mean square error
& = E||X; — XK||?] for t = 1,2,.... Simply stated, ¢ is a measure of the agreement
between the MMSE and LLSE estimates of X2 on the basis of {V,}{™*, fort = 1,2,....
The final efforts of this thesis will be to analyze the asymptotic behavior of €; as ¢ tends to
infinity—the asymptotic mean-square agreement of the true conditional and wide-sense
conditional expectation of the state given the observations. This analysis shall focus
on the time-invariant version of (1.1), when A; = A, Hy = H, and I';y; = T for all
t =0,1,.... Then we can parametrize the asymptotic behavior of {¢;}{° by the system
(A, H,T') and the initial distribution F. We are particularly interested in triples (4, H,T')
and distributions F for which limse; = 0, for then we have the important result that the
LLSE estimates { X }¢° are asymptotically as good as the MMSE estimates {X;}$°; the
LLSE estimates are asymptotically optimal in the mean square sense. The practical value
of this is clear—the LLSE estimates are usually less costly to generate than the nonlinear

MMSE estimates.

The thesis is organized as follows. In the remaining section of Chapter I, we introduce
notations to be used in what follows. In Chapter 1, we review the discrete-time Girsanov
mutually absolutely continuous change of measure, which shall enable us to solve the
prediction problem for (1.1). We discuss some aspects of the infinite-horizon Girsanov
transformation in the second section of Chapter II. Chapter III develops the discrete-
time counterpart of [17] and [19]—the case where the plant and observation noises are
uncorrelated and the observation nose has unit covariance. We call this the “uncorrelated”
problem, and the calculations of Chapter III concerning the uncorrelated problem serve
primarily as a point of departure for the solution to the more general “correlated” problem,
which is found in Chapter IV. By the “correlated” problem, we refer to the case where
the plant and observation noise jointly form a GWN sequence with any covariance such

that E[V2 VY] is positive-definite for all t = 0,1,....
Once the solution to the prediction problem associated with (1.1) is known, we, in
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Chapter V, turn to the task of finding representations for {X,;}$°, {X/}{° and {e;}{°.
Recall that for ¢ = 1,2, ..., X; is the MMSE estimate (or conditional expectation of) X7
on the basis of (¥p,Y3,...,Ys—1), while XX is the LLSE estimate of X? on the basis of

(Yo,Y1,...,Y;-1), and that ¢ := F [“X't - X’tKHQ]

Chapter VI is devoted to an analysis of the asymptotic behavior of {e:}{° for the
time-invariant version of (1.1). In Section 2 of Chapter VI, we use a result of Caines and
Mayne to find conditions on (A, H,T') such that for any initial distribution F’, we have
lim;e; = 0 with bounds on the rate of convergence also being independent of the initial
distribution F for non-Gaussian distributions F' (of course if F' is Gaussian, then ¢ = 0
for all t = 1,2,... and all systems (A, H,T'), since the nonlinear and Kalman estimates
coincide). We then further restrict ourselves to the scalar case in Section 3—here the
plant and observation processes take values in IR® = IR* = IR. In the scalar case, we
develop a complete characterization of the asymptotics of {¢;}§° as parametrized by the
time-invariant plant (@, h,T') and the initial distribution F. We shall find that if (a, k,T")
satisfies a generalized version of the criterion presented in Section 2, then lim;e; = 0
with the rate of decay also determined only by the dynamics (a,h,I'). Conversely, we
shall find that if (a,h,T') satisfies a certain instability criterion, then the asymptotic
behavior of {€;}{° depends nontrivially upon F to the extent that for some distributions
F, limse; = 0, while for other distributions F, limse; > 0. The significance of these results

is the subject of Section 4.



1.2. Background of the Problem

Filtering theory is an extremely well-developed field. The Kalman filtering equations
were first published in 1961 [11], and in the literature of the past three decades, a vast
amount of theory has been developed. The reader may wish to consult [10] for a recent
bibliography of filtering theory.

The main contributions of this thesis are twofold. Firstly, we extend the work of
Makowski [18]-[19] to cover correlated plant and observation noises with a non-Gaussian
initial condition. Secondly, we study the asymptotic behavior of {¢;}{°. The filtering or
prediction problem for linear systems with a non-Gaussian initial condition and uncor-
related plant and observation noises has been solved in [1], [2], [17]-[19], [21], [22] and
[24]. In [19], a linear system with Gaussian initial condition and observation noise, but
general non-Gaussian plant noise was considered. Of course, this problem overlaps the
one considered in this thesis, since in [19], the non-Gaussian plant noise may be taken
to be the effect of the non-Gaussian initial condition. In [17] and [18], Makowski studied
a continuous-time linear system with non-Gaussian initial conditions and uncorrelated
Gaussian plant and observation noise. The discrete-time counterpart of these two pa-
pers, also analyzed in [14] and [21], is developed in Chapter III of this thesis. Benes and
Karatzas, in [2], analyzed, with a control-theoretic orientation, a continuous-time linear
system with non-Gaussian initial condition and uncorrelated Gaussian plant and obser-
vation noises. In [24], a solution is presented for a generalized filtering problem in which
a continuous-parameter state process takes values in some Polish space and is observed
through discrete-time observations in IR™. Finally, in [1], [21] and [22], a specific class
of non-Gaussian initial distributions is considered, namely, distributions admitting a den-
sity with respect to Lebesgue measure on (IR, B(IR)) given by a convex combination of

non-degenerate Gaussian densities.



1.3. Notation

We now define several notational conventions which will simplify future presentations.
We follow the notation of [18].
Let @(-,-) be the state transition matrix associated with {A,}§°:
o(t,t)=1I,

s=tt+1,...,t=0,1,... (3.1)
O(s+1,1) = A,0(s,t).

Similarly, let ¥(-,-) be the state transition matrix described by

Y(t,t)=1I,
s=tt+1,...,t=0,1,... (3.2)
Y(s+1,t) = [A, - 1:—11—]1(2.19]-4-1 —IH,,]\II(S,t).

For any positive integers n and m, let M,,«,, be the space of n X m real matrices

and let @, be the cone of n X n symmetric positive-definite matrices.

Take A positive definite in Qy, and let || - || be the norm on IR" defined by
lizlla = Va'Az. z € IR™ (3.3)

For convenience, define || - || := || - ||z, -

Forn =1,2,...,let A, represent n-dimensional Lebesgue measure on the measurable
space (IR™, B(IR"™)).

Finally, let (', F', P') be a probability triple such that for every ¥ in Q,, there
are IR"-valued RV’s Xz, By, and (y where (Xg, Bx) is a zero-mean Gaussian RV with
covariance X, and where (x has distribution F and is independent of (Xy, Bg). Let E'
be the expectation operator associated with P’. Then for every ¢ in Z, let the mapping
T¢:IR™ X IR™ X Q3, — C be defined by

Té[z,b; T] := E'[¢(z + X5) exp[d' Bg]] (3.4)

and the mapping U¢ : IR™ X IR™ X Qp X Mpuxn X Q2 — C be defined by

Udlz,b,A,U; T] := E'[Té[z + ¥(s, (s; T] exp[b'(s —~ %C'EACE]]- (3.5)



CHAPTER II: THE GIRSANOV TRANSFORMATION

II.1. The Finite-Horizon Girsanov Transformation

We here develop the discrete-time, finite-horizon Girsanov mutually absolutely con-
tinuous measure transformation, which plays a central role in Chapters IIT and IV of this
thesis (see [8]). The arguments follow [5]. The reader is also referred to [6, Chaps. 2 &
3] for a discussion of predictable and adapted discrete-time processes and discrete-time

martingales.

Consider a probability triple (2, F, P) (not necessarily the same as the one given in
Section 1.1) and a filtration {F;}§° of F. Let {V;}{° be an IR"-valued (F;)-zero-mean

GWN process with covariance structure {A;}{° given by
As := Cov(V;) = E[V;VY], t=1,2,... (1.1)

and let {x:}{° be an IR"™-valued (F:)-predictable process. Define a third IR"-valued
(F:)-adapted process {V;}$° by

Vii= Ve — Agxe. t=1,2,... (12)

FixT = 0,1,.... Then the Girsanov transformation provides a measure P on (Q, F)

with the following properties:

(B.1): the measure P is a probability measure on (2, F) which is mutually absolutely
continuous with P and which agrees with P on F; and

(B.2): under P, the process {V;}{ is an (F;) zero-mean GWN process with covariance
structure {A;}¥ —the statistics of {V;}{ under P are the same as the statistics

of {V;}{ under P.

Note that in (B.2), we make a statement only about the finite-horizon process {V;}7, and
not the infinite-horizon process {V;}$°. This is a finite-horizon measure transformation;
under an infinite-horizon measure transformation, the entire process {V;}{* would be a
P-GWN process. We note also that two mutually absolutely continuous measures on the

same measurable space are said to be equivalent.
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Rather than directly defining the measure P, we first consider the (F:)-adapted
process {L;}§° given by

t
1
Ly := | I exp[x’sVs - §X;A5Xs]
s=1 t = 1,2’... (1.3)

Lg :=1;
note that (1.3) may be rewritten as
! _ 1
L;:= H exp[xLVs + §X;AsXs]- t=1,2,... (14)
s=1
Define the measure P by the Radon-Nikodym derivative
dP

-5 = L. (1.5)

For convenience, define the mapping J; : IR™ x IR™ — IR for each £ = 1,2,... by

Ji[v, z) := exp[z'v — %x'Atz], t=1,2,... (1.6)
so that fort = 1,2,...,
¢
L = H Je[Ve, xi]- (1.7)
s=1

We shall repeatedly use the following standard result ([13, Prop. 6.1.16]).

Lemma 1.1. Suppose that X and Y are IR™-valued RV’s and G is a sub-o-field of F.
Suppose that Y is G-measurable and X is independent of G. For any bounded Borel
mapping ¢ : IR™ x IR™ — C, then

Blp(X,Y)|6] = Blo(X,p))| P (1.8)

y:

The following results are of paramount importance in what follows.
Lemma 1.2. For allt =0,1,... and z in IR",
E[L[Vi,2]] =1 (1.9)

so that



E[JVi, x4]| Fia] = 1. (1.10)

Proof. Equation (1.9) follows by direct evaluation of the expectation. For each n =

0,1,..., Lemma 1.1 implies that

E[L[Vi, xi An| Feaa] = E[L[Vi, 2] An| Fi] , (1.11)

T=X+¢

and for all z in IR", the Monotone Convergence Theorem and (1.9) yield that
E[J Ve xid An|Fea] /1. (1.12)

Taking the expectation of both sides of (1.11) and using (1.12), we easily verify that
Ji[Vi, x¢] is integrable. Relation (1.10) is verified by passing to the limit in (1.11) and

using (1.12). O
To proceed with the verification of (B.1), we first show
Proposition 1.1. The process {L;}§° is an (Fi, P)-martingale.

Proof. By inspecting (1.3), we see that {L;}§° is (F;)-adapted. Fix ¢t = 1,2,... and

assume that L;_; is integrable. If we can show that for any A in F;_,, the relation
E[14L¢1] = E[14L4] (1.13)

holds, then the conclusion readily follows. Indeed, by setting A = , we may verify
that L, is integrable, so by induction on ¢t and the obvious integrability of Loy, L; will be
integrable for each ¢t = 0,1,.... If (1.13) is true for all A in F;_4, then also

E[Ltl}-t—l] = Lt—l P—a.s., (114)

so {L;}§° will in fact be an (F;)-martingale.

The proof of (1.13) is straightforward. Using Lemma 1.2 and the fact that L,_; is

Fi_1-measurable, we have that

E[Lade[Vi, xel(Le—1 An)] = E[L4E [Je[Vi, xi] | Fie1] (L1 A n)] (115
= E[lA(Lt_l A n)] . )

8



for each n = 0,1,.... Passing to the limit, we verify (1.13) by the Monotone Convergence
Theorem. O

Now for each ¢ = 0,1,...,T, let P; (resp. P;) be the restriction of P (resp P)
to Fy; clearly Py « P; for t = 0,1,...,T. The following result provides an alternate

characterization of the process {L;}3.

Proposition 1.2. Fort=10,1,...,T,

dp,
Li= aB, (1.16)
Proof. We must show that for t = 0,1,...,T, the relation
Py(4) = / LodP, (1.17)
A
holds for any set A in F;. But for A in F,
P,(A) = P(A) (1.18)
- / LydP (1.19)
A
- / E[L7|FdP (1.20)
A
- / L.dP (1.21)
A
= / LidP, (1.22)
A
so (1.17) is true. O

The verification that P has property (B.1) is now trivial.

Proposition 1.3. The measure P is a probability measure on (Q, F) enjoying property
(B.1).
Proof. Note by Proposition 1.2 that
dP,
— =1Ly = .
B == (1.23)

so P and P agree on Fy; in particular, P(Q) = P(Q) = 1, so P is a probability measure.
Since P{L7 = 0} = 0, P and P are mutually absolutely continuous (see [15, Lemma 6.8]).

O



From the mutual absolute continuity of P and P and Proposition 1.2, we note that
L7t = —. t=0,1,...,7 (1.24)

Let E be the expectation operator associated with P. The following result indicates the
structure of {L;'}{ under P.
Proposition 1.4. The process {L;*}¥ is an (F4, P)- martingale.

Proof. By inspection of definition (1.3), we see that {L;1}¥ is both well-defined and (F;)-
adapted, and from (1.24), Ly 1. is automatically P-integrable. To prove the proposition,
it is then sufficient to show that for t = 0,1,...,7 and A in F;,

_ _ dP
-17 _ 1.5, '
E1aLy ] = Ellazpl (1.25)
then
_ _dP
L7t =E[ﬁ|ﬂ]. t=0,1,...,7 (1.26)
But (1.25) is trivially true, since
_ — . dP,
E[l4L7Y) = E[14—] = P(4), (1.27)
dP;
and
_.  dP
Elp—=| = P(A). .
[1aZ5] = P(4) (1.28)
Hence the proposition holds. O

The following result relates the conditional expectation operators under P and P.

Proposition 1.5. Fort =1,2,...,T and any bounded C-valued F;-measurable RV X,

E[X|Fia] = LE% (1.29)
= E[X Ji[Vi, xe)| Fe-1]. (1.30)

Proof. Since X is bounded, X L, is clearly P-integrable. By Lemma 1.2, J;[V;, x4] is
P-integrable, so X Ji[V;, x¢] is P-integrable. To prove (1.29), it is sufficient to show that
for any A in F;q,

E1AL 1y E[X|Fi1]] = E[L4E[X Ly Fs_1]]. (1.31)

10



By arguments which should now be clear, we have

E[1AB[X Ly|Fy—1]] = E[14aX L] (1.32)
dP;
= E[lAXdPt] (1.33)
= E[1,4X], (1.34)
whereas
s - dP;_y
E[14L;1 E[X|Fi1]] = E[E[14X|F;4] ap, 1] (1.35)
= E[E[X1A|ft—1]] (1.36)
= E[14X]; (1.37)
thus (1.31) holds, and the proof is complete. O

We can now verify
Proposition 1.6. The probability measure P enjoys property (B.2).

Proof. It is sufficient to verify that for any ¢t = 1,2,... and each 8 in IR",
E [exp[i0'V;]| Fioa] = exp[-—%t‘)'AtH]. (1.38)
Now by Proposition 1.5, we see that
E [exp[i0'V3)| Fi-1] = E[exp[ib'V3]Je[Vz, x| Fi-1], (1.39)

where some care must be taken to ensure that the appropriate integrability conditions
are satisfied. Lemma 1.2 ensures that J¢[V;, x:] is P-integrable, and since the complex
exponential function has magnitude 1, we see that exp[i8'V;]J,[V, x:] is also P-integrable.
Forn=1,2,...,define 7, : C - C by

Tn(z) := 21{|z1<n}- z€C (1.40)

Now from the Dominated Convergence Theorem for conditional expectations, we get

B [expli6' Vi) 1 Va, x| Fea] = limo B | T (expli0' Vili1Ve, xil) | Fica
n=1,2,... (1.41)

11



and Lemma 1.1 gives

E [Tn(exp[iB'Vt]Jt[Vt,xt]) ‘.7-}_1] =F [Tn(exp[iH'Vt — i0' Agz] JL[ V3, :c])]

=Xt
n=1,2,... (1.42)
For each n =1,2,... and each z in IR™,
T, (expli6'V; — iG’Atac]Jt[Vt,m])I < JuVi ), (1.43)
S0
lim, T, (exp[i6'V; — i0' Ayz]Ji[Vy, ]) = explif'V; — i8' Ayz]Ji[Vy, 2] (1.44)

Applying Lemma 1.2 and the Dominated Convergence Theorem, we conclude that

lim, B [T, (exp[i6'Vs — i6' Aa) Vs, 2])]

=F [exp[w'Vt — 10" Ayz) [ V4, :1:]] (1.45)
1
=F [exp[(z'@ +2)'V; — §m'Ata: - i0'At:c]] (1.46)
1 !
= exp[—iac Agz], (1.47)

where (1.47) holds by direct evaluation of (1.46). Upon combining (1.39), (1.41), (1.42)
and (1.47), we verify (1.38). O

The following result, which we shall use in Chapters III and IV, is proved in exactly

the same manner as Proposition 1.5 (see [16, Sec. 28.4]).

Proposition 1.7. Fort =1,2,...,T and any bounded C-valued F;-measurable RV X,

_ E[XL7YFi_q]

EIX|Fi_1l= — .
XVl = e

(1.48)
Proof. The proof of (1.48) is the same as Proposition 1.5 if we reverse the roles of P and
P and note that L;Y, = E[L;!|F;.1], which results from Proposition 1.4. O

The Girsanov transformation presented in [5] is slightly less general than the one
presented here. In [5], it is assumed that {V;}{ is a standard GWN sequence (i.e., A; = I,,
for t = 1,2,... ). The case of a general, non-standard, GWN process could have been
considered within the framework of [5] by normalizing {V;}$° to have unit variance, but

the approach presented here is more direct.
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I11.2. The Infinite-Horizon Girsanov Transformation

In this section, we attempt to extend the results of the previous section to the infinite
horizon. The notation is the one introduced in the previous section. We seek a probability
measure P on (£, F) which is mutually absolutely continuous with P and which enjoys
property that

(C.1): the probability measure P agrees with P on Fo, and {V;}{° is an (F, P) zero-
mean GWN process with covariance structure {A:}5°.

Our starting point shall be definition (1.4) and Proposition 1.2. For ¢t =0,1,..., we
define a probability measure P; on (2, F) through the Radon-Nikodym derivative

dP;

— = L;. .

1P ¢ (2.1)
By Proposition 1.2, we know that P,y and P, agree on F; for each t = 0,1,.... The

problem is then to determine if {P,}§° in some sense converges to the sought-after prob-
ability measure P satisfying (C.1) and which may be supposed to also satisfy (C.2),

where
(C.2): fort =0,1,... P, and P agree on F;.
Note that by the arguments of the previous section, property (C.1) in fact follows
from property (C.2). Throughout this section, £ shall denote the expectation operator
associated with the sought-after probability measure P, and Z; shall be the expectation

operator associated with P fort=0,1,....

We shall see that the existence of a probability measure P on (2, F) equivalent to P
and satisfying properties (C.1) and (C.2) is closely related to the uniform P-integrability
of {L:}§°. We shall investigate the ramifications of the uniform P-integrability of {L;}§°
and provide a counter-example to show that {L;}§° need not be uniformly P-integrable.
We shall then provide a sufficient condition for uniform P-integrability which will have
a pleasing interpretation in later parts of this thesis. Finally, we shall show that even
when {L:}§° is not uniformly P-integrable, if the filtration {F;}§° satisfies a separability
condition, then the Daniell-Kolmogorov theorem enables us to construct a probability
measure P on (2, F,,) satisfying conditions (C.1) and (C.2), but which need not satisfy

any absolute continuity conditions with respect to P.
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As a first step, from Section 2, we immediately see that {L;:}§° is a nonnegative
(Ft, P) martingale. Thus by well-known results ([6, Cor. 3.17]) there is a nonnegative RV
L such that

litht = Loo P-a.s. (22)

and E{Ls] £ 1 (by Fatou’s Lemma).

The following classical result indicates the significance of uniform P-integrability of
{Le}5°.
Theorem 2.1. Uniform P-integrability of {L:}§° is a necessary and sufficient condition
for the existence of a probability measure P on (Q,F) satisfying (C.1) and (C.2) and
with P <« P. Furthermore, if {L;}$° is uniformly P-integrable, uniform P-integrability

of {L71}&° is both a necessary and sufficient condition for the equivalence of P and P.
Proof. The theorem results from [20, Prop III-1-1] and [20, Prop IV-2-3]. O

We now consider conditions under which we may find a probability measure P en-

joying properties (C.1) and (C.2) and which is equivalent to P.

Proposition 2.1. Suppose that {L;}§° is uniformly P-integrable, and let P be defined by
dP/dP = Lo,. A necessary and sufficient condition for P to be equivalent to P is that
for € > 0, there exist an n > 0 such that

sup, P{L; < n} < e. (2.3)

Proof. Note that for t = 0,1,...and ¢ > 0,

E[Li o5 0] = ElLe Ly o1y )
= E[L.L7'1 -1, ]
> (2.4)
= P{L;! > ¢}

= P{L, < 1/c}.

Consequently, condition (2.3) holds if and only if {L;'}$° is uniformly P-integrable, so
the Proposition is verified by invoking Theorem 2.1. O
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For convenjence, define the processes {N;}5°, {N¢}5°, and {(N),}$° by

t
R
Ny := ;sts t=0,1,... (2.5)
No:=0
— ! IR,
Ne=2 Ve t=0,1,... (2.6)
No:=0
! f
(N), := ;XsAsXs t=0,1,... (2.7)

(N)p :=0.

With this notation,

L; = exp[N; — ‘;'(NM
oy t=0,1,... (2.8)
= exp[Ne+ 5(V),]

We observe in passing that {(NV),}§° is called the quadratic variation process associated
with the square-integrable martingale { NV, }§° and is the unique (F;)-adapted process such
that {N}? — (N),}&° is a martingale ([20, Chapter 8]).

Anticipating the Girsanov transformation used in Chapters IIT and IV, we now assume

condition (D), where

(D): for¢=1,2,..., the RV x; is Fo-measurable.
If P is a probability measure on (Q, F) enjoying properties (C.1) and (D), it is not then
difficult to see that the processes {V;}§° and {{V),}§° have the same joint statistics under
P as the processes {N;}§° and {(N),}§° have under P.

These observations lead to the following result.

Theorem 2.2. Under assumption (D), uniform P-integrability of {L;}$° is a necessary
and sufficient condition for the existence of a probability measure P equivalent to P and

with properties (C.1) and (C.2).
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Proof. Note, from (2.6)-(2.7), that, by symmetry, the P-statistics of {N,(N),; t =
0,1,...} are the same as those of {—N;, (N),; t = 0,1,...}, so the P-statistics of
{Ny,{N),;¢t = 0,1,...} are the same as the P-statistics of {—Ny,(N),; t = 0,1,...}.

—

Uniform integrability being a statistical property, uniform P-integrability of {L;}§° is

equivalent to uniform P-integrability of {L;'}§° by (2.8). The proof is completed with
the aid of Theorem 2.1. O

Having seen the significance of uniform P-integrability of {L;}$°, we now provide a

counter-example to show that in general, {L;}§° need not be uniformly P-integrable.

A Counter-example. Let n = 1, and let {v;}{° be a scalar zero-mean standard (F;, P)-
GWN process (i.e., Ay =1fort=0,1,...). Take a in IR with |a| > 1, and let 8 be any

square-integrable Fy- measurable random variable with P{8 = 0} < 1. Set
X = a'p. t=0,1,... (2.9)

We shall show that the martingale

t t
1
L;:= exp[ﬁ E a,vs — =2 E a%]
=2 = t=1,2,... (2.10)

Lo:-——‘l

is not uniformly P-integrable.

For convenience, define the processes {n;}§° and {[n],}§° by

¢
ng 1= E a’v,
s=0

t=0,1,... (2.11)

Ng 1= 0
2t __
[n], = a2a2 :
a® —1 t=0,1,... (2.12)
[n]o :=0

and the collection {H;}§° of random Borel mappings from IR to IR by

1,
Hy(z) := explen; — 52°[n],] t=0,1,... (2.13)
H()(CL') = 1.
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Then we may write

Lt = Ht(ﬂ), t= 0,1,... (214)

so that the representation
Lo = limH(B). (2.15)

holds. We shall show that
Lo = 1ip=0}; (2.16)

then E[Ly] = P{8 =0} < 1, 50 {L¢}§° cannot be uniformly P-integrable.

Clearly, lim;H;(0) = 1. Thus it is sufficient to show that for & # 0,
lim;Hy(z) =0 P-as,; (2.17)
by standard conditioning arguments, it then follows that

E[Loolipzoy] = E[limyH(8)1(520)]

=0,

(2.18)

and Lo,1{p20} = 0 P-a.s., so (2.16) is immediate. We shall use the first Borel-Cantelli
lemma to verify (2.17).

Fix # # 0 and ¢ = 1,2,.... Noting that n; is a normal RV with zero mean and

covariance [n],, we have

Plong - ~2?[n], < —a?[n],} = P4 -2 < 52l (2.19)
2" T i Vvei[nl, T /2%[n],
_ [ segn(z)n, -—lx -

= P{——[n]t < -5l l\/_t} (2-20)

= P{sgn(w)\/T;_]t > 1|9zc|\/E}, (2.21)

where (2.21) follows from (2.20) by the symmetry of an N(0,1)- distributed RV.

Now from a well-known result in the theory of Gaussian RV’s (see [9], Appendix 2)

1
exp(—t2/2)dt < 3 exp(——21-b2) (2.22)

b

17



for b > 0, so that

—1a2p
P{an, — %.’zz[n]t < —2?[n],} < %eXP(“ifl‘]i) (2.23)
1 1
= 3 exp (—gfﬂz[n]t)'

Now lim,p exp(—p) = 0, so there clearly exists a B > 0 such that for p > B, pexp(—p) < 1,
or, equivalently, exp(—p) < 1/p. Since [n], /* oo, there exists an integer T’ such that for
t=T,T+1,..., we have 2%[n],/8 > B. Hence

1 1, 1
- —_— < 4—-. = e .
3 exp( 3 [n]t) < 4$2[n]t t=T,T+1, (2.24)
But by inspection of (2.12),
= 1
> < oo, (2.25)
=1 [n]t
so that by Borel-Cantelli, we obtain
1
P{zn; — §w2[n]t < —2%[n], io. }=0. (2.26)
Consequently,
. 1, . 2
lim sup, ( zn: — 5% [n], ) £limsupi(—2z*[n],) = —© P-a.s., (2.27)
which implies that
lim;H:(z) =0 P-aus. (2.28)
The analysis of the counter-example is complete. O

We can now appreciate the following criterion which ensures that the sequence {L;}§°

is uniformly P-integrable.

Theorem 2.3. Under assumption (D), if
E[(N)] < o0, (2.29)

then {L;}§° is uniformly P-integrable, so the probability measures P and P are equivalent.
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Proof. It is not difficult to see (by first conditioning upon Fy) that for any ¢ = 0,1,...,
E[N2] = E[(N),] < E[{(N)_]. Thus, by the Vallée-Poisson uniform integrability condition
([6], Cor. 1.19), {|N¢|}§° is uniformly P-integrable. Since {{N),}§° is increasing and
nonnegative, (2.29) also implies that {(/V),}§° is uniformly P-integrable. Since the sum
of two uniformly P-integrable processes is itself uniformly P-integrable, {|N;| + (), }&°
is uniformly P-integrable. We then know, using [6, Theorem 1.18], that

sup, E[|N/| + %(N)t] < 0. (2.30)

Take € > 0 and ¢ > 0 such that

E[|Ny + XN
nes SuPr i t€|+ 3{ )t], (2.31)

and observe that for all t = 0,1,...,

E[Lr,>ep] = Efl{r,50]
= P{L; > ¢} (2.32)

- 1
= Pt{Nt+ §(N>t > ].IIC}.

Since N, and (N), have the same joint statistics under P; as Ny and (N}, have under P,

we see that

L 1 1
Pt{Nt+ —2-<N>t > lnc} = P{Nt + §<N>t > 1110}

< PN+ %(N)t > Inc} (2.33)

¢ BN+ (X))

by Markov’s inequality. From (2.31), we then get that
E[Ltl{L'>c}] <e¢ (234)

forall t =0,1,..., so the process {L;}§° is uniformly P-integrable. O

Finally, we show that if for t = 0,1,..., the o-field F; is separable (i.e., generated
by a countable number of RV’s), then the Daniell-Kolmogorov theorem enables us to

construct a probability measure P on (, F,,) which enjoys properties (C.1) and (C.2),
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